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THE GENERATION OF SOUND IN THE FLOW OF AN EXCITED GAS 

V. V. Likhanskii and O. V. Khoruzhii UDC 534.14:533.6.011 

We examine the development of sonic perturbations in the bounded subsonic flow 
of a gas excited by oscillations. 

i. In a number of practical problems it is necessary to have adequate uniformity in 
the parameters of the active gas flow. Thus, for example, in the utilization of thermodyna- 
mically nonequilibrium gas media in lasers the nonuniformity of the flux density may, to 
a great extent, determine the quality of the light bundle (brightness and angular dispersion). 
In the case of large Reynolds numbers, the flux is made turbulent, which leads to chaotic 
nonuniformities in the index of refraction for the medium. The effect of flux turbulization 
on the gradient dispersion has been investigated in detail in [i]. 

In the presence of V-T relaxation, the medium exhibits a second viscosity [2], which 
may exceed the magnitude of the first, and in the case of considerable nonequilibrium it 
becomes negative. The dissipation of the sound under these conditions in the case of sta- 
tionary nonequilibrium has been studied in [3, 4]. The present paper is devoted to a study 
of the unique features involved in the development of sound perturbations in the flow of 
a gas excited by oscillations. The nonuniformity of the parameters of the medium in the 
direction of the flow leads to refraction of the wave and to the departure of the perturba- 
tions from the region of intensification. It is demonstrated that considerable growth in 
sound waves is possible only when turning points are present, and under certain specific 
conditions the flow is absolutely unstable with respect to the generation of the sound. Cor- 
responding increments have been determined. 

2. The flow of a gas excited by oscillation will be described by the equations of gas- 
dynamics, by the equation of state, and by the equation for oscillation energy: 

Op Ov 
Ot . - ]-divpv=O, P--~-- - - { - P ( v v ) v = - - v P ,  

OS To -- T q___ O~os eoso- ~o~ 
ot +(vv) s=cv  ~ +  r '  ~-  +(vv)%= + . ,  

T 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 57, No. 4, pp. 562-566, October, 
1989. Original article submitted April 20, 1988. 

0022-0841/89/5704-1155'$12.50 �9 1990 Plenum Publishing Corporation 1155 



%s+cvT=eoso+cvTo, p= R pT. (i) 

Relaxation to the equilibrium values of the temperature T o and the oscillation energy eos~T0) 
is described in simplified terms by the single relaxation time T, which is dependent both 
on the pressure and the temperature of the gas. We assume the gas to be polytropic, with 
heat capacity c V. The effects associated with the thermal conductivity and frictional vis- 
cosity are assumed to be neglibily small. 

Let us examine the flow of the gas through a rectangular tube with absolutely solid 
and thermally insulated walls. We assume the unperturbed flow to be uniform and steady. 
We might expect the simplified model (i) to describe the development of perturbations, for 
which the second viscosity considerably exceeds the first. We will set aside the questions 
of sound generation as a consequence of turbulence, these questions having been thoroughly 
studied in [5]. 

In the stationary case the system of equations (i) exhibits three integral motions and 
reduces to the following equation for the velocity of the flow: 

u 2 P ~ q q- n 
~)U = E l ,  P -t- PU ~ = C~, cv T q-  eos ~ - ~ -  -t- - -  - -  j dx ---- C3, 

P o u (2) 

(1 -- M ~) d._.__~u _-- T O --_____TT q_ q 
dx ~T  cpT 

Throughout in the following we examine flows with M < i. 

The equations for the perturbations are derived through linearization of system (I). 
Two independent types of waves exist in the linear approximation, and namely, sound waves 
and entropy waves. All remaining results pertain to sound perturbations. 

In the lateral cross section the perturbation is represented by standing waves. The 
boundary conditions are reduced to conventional quantization of the transverse components 
of the wave vector: 

l, k z = k~ = ,  Lv tz m. 

The r e l a t i o n s h i p  to  the  l o n g i t u d i n a l  c o o r d i n a t e  x and to  t ime f o r  h i g h - f r e q u e n c y  sound 
(~T > 1) w i l l  be sought  in  the  form 

f = f (x) exp |-- ir + i S k,,dx + atl. 

Here f(x) is a smooth function [(i/f)(df/dx) ~ kx]; m, ky, and k z which do not change in 
the propagation of the wave. 

The dispersion relationship and the link between the various quantities in the wave, 
accurate to terms of the first order of magnitude with respect to i/mT ~ l, have a form 
that is usual for sound in a moving medium [6]: 

(~ -- k~u) 2 = k~, 

x 2 k 2  

P 

(3) 

(4) 

(5) 

V i ~--- p ( ~ - -  k~u) ' (6) 

, ~  O, 

~ O, 

(7) 

(8) 
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/~c exp a ( 9 ) 
= A %:g k Ira# 2 Vg r J 

F 0 
where Ogr= 4- k is the group velocity of the perturbations; N = ~ OP 

L 

_ _ q  p \ ~T -t- cvT s.sh " R e l a t i o n s h i p s  (3)  and (4 )  d e s c r i b e  t h e  r e f r a c t i o n  o f  t h e  sound b e i n g  

p r o p a g a t e d  a t  an a n g l e  t o  t h e  d i r e c t i o n  o f  t h e  f l o w ,  w h i l e  r e l a t i o n s h i p s  ( 5 ) - ( 9 )  d e s c r i b e  t h e  
r e l a t i o n s h i p  o f  t h e  v a r i o u s  p e r t u r b a t i o n  p a r a m e t e r s  and t h e i r  change  in  t h e  d i r e c t i o n  o f  
t h e  f l o w .  I n  e x p r e s s i o n  (9 )  f o r  p r e s s u r e  t h e  p r e e x p o n e n t i a l  f a c t o r  r e f l e c t s  t h e  i n t e r a c t i o n  
o f  t h e  wave w i t h  t h e  f l o w ,  w h i l e  t h e  e x p o n e n t  r e p r e s e n t s  t h e  i n f l u e n c e  e x e r t e d  on t h e  V-T 
r e l a x a t i o n  and r e l e a s e  o f  h e a t  a p p l i c a b l e  t o  t h e  wave .  The c a s e  o f  n e g a t i v e  s e c o n d  v i s c o s i t y  
c o r r e s p o n d s  t o  N > 0. 

I f  t h e  r e l a x a t i o n  t i m e  e x h i b i t s  t h e  L a n d a u - T e l l e r  f o rm P'r - exp(E/T)  1/3, and t h e  d e n -  
s i t y  o f  t h e  h e a t  l i b e r a t i o n  d e p e n d s  e x c l u s i v e l y  on t e m p e r a t u r e  q / c v T  = f~(T), t h e n  

I 

The continuity equation for the energy of the wave 

a__~_w 
+ (vg w) = N W .  ( l l )  

ot 
The presence of a region within the flow of negative second viscosity (N > O) leads to am- 
plification of the sound. The greatest amplification occurs near the points of wave rotation, 
where Vg r = O; ~2 = kl=(C2 _ u=). 

If the profile of c a - u 2 exhibits a maximum, it becomes possible to generate a sound 
with a frequency m = kl/max )c 2 - u2). From Eq. (ii) we have the condition of generation: 

N / > i /  #(c~--us)  I - - M  ~ -- d# ---V--'" ( 12 ) V 

In the case of purely relaxation heating (q = O) the function c = - u 2 exhibits a maximum 
in that section in which the velocity u = c//y~ 2 is attained. In this case the increment 
is equal to 

a_To--_____T T T + l _ l  / ~ - - c o  
27~T 2,# " (13) 

The flow is unstable with high nonequilibrium and where the relaxation time is sharply de- 
pendent on temperature. The existence of energy losses comparable to the relaxation heating, 
but without violating the monotonicity of the u(x) profile, mitigates this condition. A 
sound is generated with the frequency ~ = 4~7 + 1 klu and k x = -k14~ + i. 

If the maximum of c 2 - u = coincides with the maximum of the flow velocity and the heat 
losses are explicitly independent of x, condition (12) assumes the form 

I 

(1 - -  (? + 2) .M ~) 1 -t- q c , r  
l ) f i -  ' ' 

~M2 (cv + c o ~ (To " T )  2~ ' (14) 

where (i - (y + 2)M 2) (I + n/q) > 0 is the condition for the maximum. Sound generation is 
possible if the Mach numbers are not excessively small and if the losses ~ are weakly depen- 
dent on temperature. 
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In either case, the developing perturbations occupy the entire region of the flow. 

If the profile of the flow velocity (and, consequently, the profile of c 2 - u 2) exhibits 
a minimum, then a portion of the perturbations will be blocked between the two turning points. 
A somewhat unusual sound resonator is formed. The perturbations occupy a limited region 
of the flow and represent a discrete set of modes. The expressions for the frequencies and 
increments have the form: 

" I I  . 

cctx = i + 
xlt 

( is)  

f '~ (N .- 2ai) t~#~" = 0-~ ( 16 ) 

The frequencies m ~ k• (c 2 - u=); the increments a i ~ Nav/2. The quasiclassical condition 

is klUT m i. 

3. These results are easily generalized to the case in which the relationship between 
the relaxation time and density and temperature differ from the Landau-Teller form. Let 
us also take note of the fact that although in the main we have been speaking of the relaxa- 
tion heating of the gas, similar effects are possible with a different nature for the evolu- 
tion of heating, with pronounced dependence on the parameters of the medium, e.g., in an elec- 
tric discharge. These are described by relationships (i)-(12), (15), and (16) without a 
relaxation term. 

In conclusion, we present estimates of the following parameters of oscillation excited 
gas. In the nonequilibrium case (T o - T)/T - 0.i, with relaxation times of �9 ~ 10-3-10 -4 
sec, and with pressures of P - 0.i arm, the second viscosity is negative and exceeds the 
first in the case of sound perturbations with a wavelength on the order of i cm. Under these 
conditions the increments amount to ~10 2 sec -l. 

NOTATION 

p, T, P, S, v, density, temperature, pressure, entropy, and velocity of the gas; Cos, 
density of oscillation energy; q, heat generation, existing in addition to the relaxation 
heating; n, pumping; the x axis is directed along the channel; u = Vx; T = c /c V, adiabatic P 
exponent; CI, C 2, C 3, constants determined by the boundary conditions in the cross section 
x = 0; M = u/c, Mach number; c = TP~, velocity of the high-frequency sound; s m, whole 
numbers; L v and L z are dimensions of the channel along the y and z axes, respectively; kx, 
longitudinal component of the wave vector; m, frequency; a, perturbation growth increments; 

]/f, os+ Cp P velocity of the low-frequency sound; Cos(T 0) = dcos0/dT 0, A, amplitude; c0 ~Cos+Cv T ' dQ T 

heat capacity of the oscillation degrees of freedom; ~= dT'"-fl; i m i, mode number; xli and 

x2i , corresponding points of rotation; W = l~I2~/pkc 3, wave energy; V-T, oscillation-trans- 
lation relaxation. 

. 
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